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Summary

During the last centuries, humans have transformed global ecosystems. With their temporal

dimension,herbariaprovide theotherwise scarce long-termdatacrucial for trackingecological and

evolutionarychangesover thisperiodof intenseglobal change.The sheer sizeofherbaria, together

with their increasing digitization and the possibility of sequencing DNA from the preserved plant

material, makes them invaluable resources for understanding ecological and evolutionary species’

responses to global environmental change. Following the chronology of global change, we

highlight how herbaria can inform about long-term effects on plants of at least four of the main

drivers of global change: pollution, habitat change, climate change and invasive species. We

summarize how herbarium specimens so far have been used in global change research, discuss

future opportunities and challenges posed by the nature of these data, and advocate for an

intensified use of these ‘windows into the past’ for global change research and beyond.

Introduction

Global environmental change is one of the major challenges of the
20th and 21st centuries. It has been evident since the age of
industrialization in the late 18th century – sometimes also referred
to as the advent of the anthropocene – and has continuously gained
momentum (Fig. 1a; Steffen et al., 2011; Hamilton, 2016).
Biologists study global change for its broad ecological impact,
and its negative effects on biodiversity. Also, as it represents an
unplanned, long-term and large-scale experiment, studying global
change can promote understanding of fundamental processes such
as rapid adaptation. Experimental approaches to study these topics
are usually locally focused, and limited to a duration of a few
decades (Leuzinger et al., 2011). Although observational methods
are often more large-scale and long-term, they are with few
exceptions still restricted to a time frame of 50–80 yr (Fig. 1a; Fitter
& Fitter, 2002; Thomas et al., 2004). To understand both the
extent of global change as a long-termprocess, and its full ecological
and evolutionary impact, global data that go back to the onset of
industrialization are crucial.

In this context, natural history collections are an underused
treasure of temporally and geographically broad samples that we

have just begun to dust off (Holmes et al., 2016). Especially rich is
the botany section of this vault: plants collected, pressed and
preserved, inmost cases together withmeta-information on species,
collection site, date and collector (Fig. 2): In terms of extent, there
are > 350 million specimens in almost 3000 herbaria world-wide
(Fig. 1b; Thiers, 2017; http://sweetgum.nybg.org/science/ih/),
sampled from the 16th century up to today (Sprague & Nelmes,
1931), and the collections’ potential uses range from classical
taxonomy and systematics, to archaeobotany, archaeoecology and
climate change research (Funk, 2003). Because plants are sessile,
they are particularly exposed to environmental change. The time
courses of many of their responses to environmental change are
preserved in herbarium specimens, which therefore provide unique
spatiotemporal data for studying global change (Primack&Miller-
Rushing, 2009; Lavoie, 2013; Vellend et al., 2013; Meineke et al.,
2018).

Recent studies have emphasized the scientific value of herbaria
for a broad range of global change-related topics (Fig. 2; e.g. Zschau
et al., 2003; Miller-Rushing et al., 2006; Feeley & Silman, 2011;
Willis et al., 2017). Dense time-series of herbarium specimens even
permit studying long-term processes such as recent invasions and
their genetic population history (Exposito-Alonso et al., 2018a).
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Even though herbaria were used as early as in the 1960s to study
global change (e.g. Ruhling & Tyler, 1968, 1969), and are in the
process of beingmade available online via digitization (> 46 700 000
specimens in the IntegratedDigitized Biocollections portal alone; as

of 18 July 2018 https://www.idigbio.org/portal/ (search terms: type
of record – PreservedSpecimen, kingdom – Plantae)), the commu-
nity has not fully adopted herbaria as valuable ‘timemachines’ to the
past (Lavoie, 2013;Meineke et al., 2018). Especially with the advent
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Fig. 1 Herbaria as global change witnesses. (a) Timeline of global change, with lines tracking changes in world population, air temperature and atmospheric
CO2 during the last c. 200 years. Dashed line ends indicate future projections. Bars below plot indicate the typical temporal extent of herbarium samples vs
observational studies and experiments. (Population growth: United Nations, Department of Economic and Social Affairs, Population Division (2017); World
Population Prospects: The 2017 Revision. http://esa.un.org/unpd/wpp/; temperature: representative concentration pathway 8.5, Intergovernmental
Panel on Climate Change, www.ipcc.ch; (Marcott et al., 2013); CO2: (Neftel et al., 1994)). (b) Map with global distribution of herbaria (for visual clarity
displaying only herbaria of > 100 000 specimens), names of the largest 10 herbaria, and number of herbaria and herbarium specimens curated per continent
(reflectingplacesof storageof specimens, not their origins;Herbariumdata from IndexHerbariorum,http://sweetgum.nybg.org/science/api/v1/institutions/.
Accessed in April 2018).
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of high-throughput methods and recent technical developments in
image analysis, the value of these collections is now more apparent
than ever (Munson & Long, 2017).

Simultaneously, next generation sequencing (NGS) techniques
now allow for in-depth genetic analysis of century-old specimens
up to whole genome sequencing of plants and even of their equally
preserved pathogens (e.g. Martin et al., 2013; Yoshida et al., 2013;
Durvasula et al., 2017; Exposito-Alonso et al., 2018a). This extends
the spectrum of available long-term data far beyond morphology or
phenology. For instance, dense sampling of such full genetic
information across time – and geography – enables population
genetics studies, to follow speciation processes through time, or to
quantify changes in genetic diversity in historical contexts.Working
with these small samples of degradedDNA – so-called ancientDNA
(aDNA) – retrieved from historic collections is technically challeng-
ing and has recently boomed in the animal field (e.g. Shapiro &
Hofreiter, 2014;Orlando et al., 2015;Marciniak&Perry, 2017), yet
in the plant field it is still rarely used (Gutaker & Burbano, 2017).

Here, we present an overview of the different types of
herbaria analyses possible in global change research (Fig. 2).
Following a timeline from industrialization onwards, we divide

herbarium-related approaches into four main areas related to four
main drivers of global change: industrialization causing increased
pollution, which coincides with increasing loss of habitat and
changes in land use as well as climate change, and finally global
trade and transport resulting in an increasing number of invasive
species world-wide. In addition, in excursions dedicated to
molecular methods (Box 1), collection biases (Box 2) and the
digitization challenge (Box 3), we provide insight into three key
methodological issues that herbaria research is currently dealing
with, and hopefully inspire with ideas for extended utilization of
botanical collections.Our aim is to advocate broader use of herbaria
as ‘witnesses’ of global change. We believe that they have the
potential to fast-forward our understanding of the impacts of this
unplanned biological experiment, to substantiate our predictions
of its long-term outcomes, and to inform conservation measures.

Pollution

Technological developments and the mechanization of work in the
second half of the 18th century, known as industrialization, changed
the landscape world-wide. Key contributors were improved efficiency
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of steam engines, the replacement of biofuels with coal and the
emergence of a chemical industry. A larger average income, increasing
population sizes and accelerated urbanization led to the production of
previously unseen quantities of waste and exhausts (Fig. 1a). Herbar-
ium specimens can be used to track historical pollution levels, to serve
as a baseline for pre-pollution conditions, and to connect waste
production with species’ reactions – even at the genetic level in the
context of local adaptation, or to study long-term effects of singular
events such as the Chernobyl nuclear disaster (Heinrich et al. 1994).

Heavy metals

Metals from the atmosphere, soils and groundwater are deposited
on or taken up by plants, and remain present in herbarium

specimens, so the latter can be used as indicators of pollution, and
due to their meta-information facilitate the dating of contamina-
tion (Lee &Tallis, 1973; Shotbolt et al., 2007; Rudin et al., 2017).
Depending on species, their morphology, physiology and proxim-
ity to a pollution source, plants are exposed to and take up more or
less pollutants (Lawrey & Hale, 1981; Rudin et al., 2017).
Studying lead pollution levels, for example, the isotopic lead
composition in moss or lichen samples collected at roadsides
reflects fluctuations in local motor vehicle traffic, efforts to reduce
lead emissions and changes in petrol origin or composition over
time (Farmer et al., 2002). In addition to lead, herbarium samples
also track concentrations of other metals such as cadmium, copper
and zinc to follow their temporal and spatial trends in relation to
anthropogenic activities (Zschau et al., 2003; Shotbolt et al., 2007;

Box 1Molecular analyses and degradation

The age of herbarium specimens is both their strength and their weakness, as aging is a corrosive process. Formost chemicals, the extent, rate and end-
results of this process are not defined in herbarium samples. Still, it is clear that age, but also preservation practices or storage conditions can alter tissue
chemical contents. This is evident, for example, when N concentrations measured in stored tissues diverge from the results of previous methods and
studies – in this case likely due to post-collection contamination (Nielsen et al., 2017). Hence, in-depth analyses of correlations between the age and
chemical compound quantities in old samples are necessary in order to make claims about historical absolute abundance values (Nielsen et al., 2017).
For DNA from historical samples – aDNA – age-related degradation dynamics are fairly well-characterized (Allentoft et al., 2012; Weiß et al., 2016).
Due to chemical modifications, DNA in dead tissue gets increasingly fragmented over time (Fig. B1a), and particularly in fragment ends, aDNA-
characteristic deamination drives nucleotide-substitutions of cytosine with thymine ((Weiß et al., 2016); Fig. B1b). This per se does not lessen the
potential of aDNA-studies (Gutaker & Burbano, 2017): specialized protocols even allow extraction of ultra-short fragments of < 50 bp (Gutaker et al.,
2017), and the correlation of nucleotidemisincorporationswith time enables its use as authenticity criterion of ancient DNA (Sawyer et al., 2012;Weiß
et al., 2016). Still, theseparticular characteristics call for categorical rules for herbariumgenetics tominimize contamination risks, verify authenticity and
maximize the information gained from precious old plants: samples have to be processed in clean room facilities to avoid contaminations with fresh
DNA,and sequenced toa certaindepth toyielduseful information.PurePCRanalyseson thecontrary are inappropriate for aDNAstudies, as theydonot
allow the necessary authenticity verification and, due to the fragmentation of aDNA, are unlikely to yield consistent results.
Such quality requirements are particularly important due to the limitation of availablematerial. Unlike traditional approaches that rely onmetadata or

morphologyof historical samples,molecular analyses require tissueprobes andhencedestructive samplingof specimens. Therefore, it is the duty of any
molecular herbarium scientist to optimize their methods, minimize the amount of sample needed, and employ state-of-the-art analyses to retrieve
maximum information from their samples. In the same vein, molecular herbarium scientists and curators should aim to maximize the detail of meta-
information that can be gathered from samples. Knowledge, for example, about temporary field collection in alcohol, or post-collection specimen
treatments with heavy metals (as insecticides or fungicides) is indispensable to assess the suitability of specimens for molecular approaches.
Furthermore, both curators and researchers need to assess specimen-label and specimen-sample pairs for their correctness, and remain cautious
particularly regarding the interpretation of trends in (molecular) data observed only in few or single samples.

Fig. B1 Typical molecular characteristics of herbariumDNA. (a) Fragment size distribution and (b) damage pattern found in ancient DNA (sample data
fromWeiß et al. (2016), publicly available at ENA ID ERR964451).
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Rudin et al., 2017). Combining pollution records and genetic
information from historical and contemporary samples from
contaminated sites can even enable studies of plants’ adaptation to
pollution at the genetic, heritable level, for example by studying the
association between pollution levels and specific alleles, and thus
give indications about long-term adaptation to changing condi-
tions. Such approaches are already well-established for contempo-
rary data alone (Kawecki & Ebert, 2004; Turner et al., 2010;
Arnold et al., 2016).

Anthropogenic nitrogen

Similarly, herbaria document human influences on global nitrogen
(N) cycling, that started with the rise of the chemical industry and
the production of fertilizers, and has peaked since c. 1960
(Millennium Ecosystem Assessment, 2005). Moss leaf N-contents
(as well as concentrations of phosphate and sulfur) determined
from stable isotope ratios enable inferences about realizedN sources
and further cycling processes (Pe~nuelas & Filella, 2001). Such
analyses show a retention of additional, anthropogenic N within
terrestrial ecosystems (Pe~nuelas & Filella, 2001). Improved
knowledge of these nutrient dynamics within different ecosystems
helps us to understand eutrophication. Additional detail on the
biotic effects of N fluctuations could be retrieved via shotgun-
sequencing of historical plant roots, given that bona fide micro-
biomes could be recovered, as it has been shown that the bacterial
species composition of roots (and soils) is heavily influenced by
overabundance of N (Dynarski & Houlton, 2018).

Increased carbon dioxide

Pollutants such as N or carbon dioxide (CO2) can influence overall
organismal morphology, making their effects partially measurable
without destructive sampling. Increased fossil fuel combustion and

the concurrent increase in CO2 concentrations since the industrial
revolution, for example, correlate with a reduction of stomatal
densities on the leaves of herbarium specimens. This trend was
already observed in 1987 in a 200-yr spanning study of woody
angiosperm herbaria samples. Further analyses under controlled
experimental conditions (Woodward, 1987; Pe~nuelas & Mata-
mala, 1990) confirm historic samples as proxies to reconstruct past
CO2 concentrations.

In addition to morphological studies, herbarium specimens
enable complementary measurement of global change effects on
plant carbon metabolism. Using mass spectrometry to estimate the
relative abundances of different carbon isotopes, studies indicate
increased water-use efficiency – the ratio of photosynthesis to water
loss – with rising CO2 concentrations (Pe~nuelas & Azc�on-Bieto,
1992; Pedicino et al., 2002). With time-series of genetic variation
from herbaria, it is now further possible to determine what part
long-term adaptive changes or phenotypic plasticity play in such
physiological or chemical responses.

There is, however, one caveat for measurements of any type of
chemical compounds in long-term stored historical samples: Do
chemicals suffer degradation processes similar to hydrolytic
damages occurring in DNA over time (see Box 1)? If so, to which
extent and at what rate do compounds degrade, and what influence
do factors like species, specimen mounting or general storage
conditions have on such a decay? Systematic studies of chemical
degradation through time will permit the assessment of whether
absolute or relative values should be used in historical specimens-
based long-term comparisons.

Habitat loss and land-use changes

Apart from pollution, increasing human population densities,
urbanization and, in particular, modern agriculture have caused
extensive losses, fragmentation or changes of natural habitats. This

Box 2 Collection biases

Imbalanced sampling is awell-acknowledged issue for theuseof herbaria, for example, tomap species distributions or assessdiversity (e.g.Meyeret al.,
2016; Daru et al., 2018). Temporal biases are caused by intense collection periods, and seasonal preferences (Holmes et al., 2016). Also, collections
often concentrate on easily accessible or much-frequented sites (geographic bias; e.g. Sofaer & Jarnevich, 2017), and on common or particularly
interesting specieswhich–dependingon the collectors– can changeover time (taxonomicbias; e.g. Feeley,2012).Whenworkingwithherbariumdata,
it is necessary to explicitly test for these biases, for example to avoid a few dominant species generating trends in a dataset (J�acome et al., 2007).
Dependingon the typeofquestionor analysis, biasesmayneed tobecorrected forbydifferentmeans: normalizing collectioneffortswithdifferent types
of reference sets (e.g. Heden€as et al., 2002; Law& Salick, 2005; Case et al., 2007), measuring invader distributions in relation to native species (Delisle
et al., 2003), or verifying trendswith additional, nonherbarium datasets (e.g. Lienert et al., 2002; Kouwenberg et al., 2003; or even those from citizen
science, Spellman & Mulder, 2016). In particular when models are based on historical records, comparisons with modern data can support
extrapolations or generalizations, but only if biases have been dealt with: models, for example, in the context of invader dynamics and spread, have to
take species persistence into account, because historic occurrence does not equal contemporary presence and may cause overestimation of plants’
distribution and abundance (Pergl et al., 2012). This is particularly the case for species targeted by eradication measures, such as the human health
hazard Heracleum mantegazzianum, where herbarium specimens can indicate suitable habitats, but not current occurrence or general invasion
dynamics (Pergl et al., 2012). Furthermore, there are often no data on early invasion stages, because herbarium records indicate only the presence of a
species, whereas its absence is not reliably documented by a lack of records. Conclusions based onmodeling and statistical analysis, particularly of early
invasion stages, should hence be used as indications rather than be over-relied upon (Hyndman et al., 2015). Finally, the currently rising bias of low
collection effort is awell-knownproblem for tropical areas (Feeley& Silman, 2011), yet is threatening to becomeglobal, via overall declining collections
(Prather et al., 2004). Although this particularly jeopardizes studies of new or recent invasions (Lavoie et al., 2012), it strongly affects all herbarium-
based research.
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affects plants’ geographic distribution and densities, for example
causing range reductions to more pristine environments
(Hallingb€ack, 1992). Information about such habitat alterations
in response to global change are documented in herbaria.
Herbarium sheets normally contain information about the
presented species and sometimes other, associated species (referred
to in accompanying meta-information, or co-sampled with the
focal species, e.g. pathogens). Importantly, herbarium sheets also
state the time and place of collection. Hence, comparison between
past and present localities serves to infer a species’ distribution
through time (Hallingb€ack, 1992).

Distribution changes

Many factors have contributed to converting the landscape into
a patchwork of agricultural fields, interspersed with cities and
roads: industrialization-associated population growth, urbaniza-
tion, increasing agricultural acreages due to mechanization of
work, or expansion of railroads and other transport systems.
Overall, species abundances tend to decrease with habitat and
land-use changes, as is the case, for example, for American
ginseng (Panax quinquefolius), both as a result of deforestation
and of heavy harvesting of wild populations (Case et al., 2007).
In light of an area’s geography, such data also can inform
species’ conservation and future trends (Case et al., 2007).
However, retrospective studies of species’ abundance in a certain
location based on historical collections are sensitive both to the
quality of available georeferencing data, and to fluctuating
collection efforts and other biases (see Box 2). A reference set of
specimens picked from the herbarium randomly and indepen-
dent of species identity can be used to establish a general
‘expected collecting frequency’, which can balance these biases
(e.g. Heden€as et al., 2002).

When herbarium records are used to relocate historical popu-
lations, current data complement herbarium-inferred distributions
and abundances (Lienert et al., 2002; Stehlik et al., 2007).Herbaria
may in some cases be the only documentation of (likely) extinct
species (Chomicki & Renner, 2015). Revisiting surveys can detect
such local extinction events, and, in correlation with current land-
use practices or site protection status, be used to study their causes
(Lienert et al., 2002).They can further document changes in overall
plant diversity, which, too, is affected by habitat fragmentation
(Stehlik et al., 2007). Such approaches are particularly useful to
evaluate changes in the local flora and motivate biodiversity
monitoring campaigns, and can inform large-scale diversity
surveys, as well as modeling-based inferences or predictions.

Indirect effects of habitat fragmentation

Similar to farming-related landscape changes, urbanization is a
prominent driver of biotic interaction changes. One of the most
crucial, commercially important types of plant–animal interaction
jeopardized, among others, by urbanization and diversity loss, is
pollination. Depending on a plant’s anatomy, herbaria also house
documentation of such interactions, and can illustrate pollinator
species decrease or loss. Presence or absence of pollinaria in
herbarium specimens of the orchid Pterygodium catholicum, for
example, reflects the historical pollination rate that depends strictly
on a specific bee (Rediviva peringueyi) (Pauw & Hawkins, 2011).
The bee’s decrease following urbanization is consistent with a shift
in local orchid communities towards selfing species (Pauw &
Hawkins, 2011). Impairment of interactions between plants and
their pollinators, caused for instance by such abundance decreases
or temporalmismatches, likely also leaves genetic signatures. Given
that affected biotic interactions could be identified using historical
plant and insect collections, these signatures could be traced

Box 3 Digitization challenge

Large-scale digitization is crucial to make biodiversity data more accessible, balance the unequal distribution of collections world-wide (Drew et al.,
2017; see also locations of all herbariawith> 100 000 specimensworld-wide, Fig. 1b), increase the use of herbaria in general, the number of specimens
includedper study specifically (Lavoie, 2013), and fuel novel research (see Soltis, 2017; Soltis et al., 2018).Various onlinedatabases alreadyoffer access
to vast amounts of data (e.g. https://www.idigbio.org/, www.gbif.org, http://vh.gbif.de/vh/or http://avh.chah.org.au/), but the digitization task is
enormous –with over 350 million specimens to process – and expensive. To optimize and speed up the process, various larger and smaller institutions
have developed affordable digitizationworkflows (Haston et al., 2012; Nelson et al., 2015; Thiers et al., 2016; Harris &Marsico, 2017). Depending on
data needs, digitization could be done in a prioritizedway. In conservation biology, for instance, a fraction of available specimens appears to be enough
to reliably detect threatened species and trigger conservation efforts (Rivers et al., 2011). Howand towardswhich end such prioritization is carried out,
and how large-scale digitization projects would be funded, is a question that needs to be addressed.
Apart from cost and speed, the transcription of meta-information, and particularly georeferencing information, is another digitization bottleneck.
Optical character recognitionmayhelp sortingentries by collector or country (Drinkwateret al., 2014), asmight thedevelopment of semi-automated

imagingpipelines (Tegelberg et al., 2014).Other projects use citizen science approaches to transcribe specimen labels ((Hill et al., 2012); https://www.
notesfromnature.org/active-expeditions/Herbarium), and computer vision ormachine learning (re-)classify specimens that are unidentified, orwhose
identification was based on an old taxonomy (Unger et al., 2016; Carranza-Rojas et al., 2017; Gehan & Kellogg, 2017). Still, imprecise or wrong
georeferencing is common in herbarium data (Yesson et al., 2007), an issue that is particularly problematic in conservation, for species distribution
assessments, or prediction approaches (Feeley & Silman, 2010). Although care with location data from herbaria is, hence, necessary, digital field
notebook apps such asColectoRmay at least help guarantee complete and correctmeta-information for novel collections (Maya-Lastra, 2016). Finally,
in light of concerns about misidentification of up to 50% of tropical specimens world-wide (Goodwin et al., 2015) and the continuously evolving
taxonomy, such notebooks, together with the aforementioned computerized identification approaches and even molecular methods, as well as
rigorous and continuous manual verification of specimen identities, are crucial to ensure the value of herbaria and herbaria databases.
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through time and inform the potential of other species-pairs to
overcome future mismatches.

Besides the apparent decrease of species diversity, losses of
within-species genetic diversity are a less conspicuous consequence
of habitat loss, and are a result of shrinking and increasingly isolated
populations (Ellstrand & Elam, 1993; Young et al., 1996).
Improved high-throughput sequencing techniques and novel
molecular approaches have recently made within-species genetic
diversity – as preserved in herbaria – accessible (see Box 1). This
ancient genetic information extends the information on habitat loss
and decreasing relative abundances to the genetic level (Cozzolino
et al., 2007; Martin et al., 2014b), with already few specimens
giving insights into a population’s genetic background. This is
crucial knowledge for conservation measures, as genetic diversity,
especially in times of increasingly fluctuating environmental
conditions, is an indispensable resource for heritable phenotypic
variation and rapid adaptation (Huenneke, 1991; Exposito-Alonso
et al., 2018b). Reduction of genetic diversity via abrupt decimation
of a population, referred to as a bottleneck, can hamper the
population’s persistence, as selection is less efficient in small
populations, where there is more stochasticity and less standing
variation to act upon (Ellstrand& Elam, 1993; Young et al., 1996;
Hartl & Clark, 2007). Comparison of contemporary vs historical
genetic diversity can serve to prioritize the conservation of specific
populations over others, and to identify genetically diverse source
populations for potential reintroductions to balance bottlenecks
(Cozzolino et al., 2007).

Climate change

Some factors on the rise since the start of industrialization, and
potentially even before that, have less direct, but long-term effects on
ecosystems: the so-called greenhouse gases such as methane (CH4)
and CO2 (Fig. 1). Their atmospheric increase – for CO2 a result of
enhanced fossil fuel burning in factories, power plants and for
transportation – causes global warming and as a result climate change
(MillenniumEcosystem Assessment, 2005). Thus, in addition to the
earlier mentioned direct effects of the pollutant CO2 on plant
morphology and physiology (see the ‘Pollution’ section), progressive
CO2-related globalwarming influences plant life cycles, as is observed
for instance already in shifts of plant life cycles, as is observed for
instance already in shifts of plant phenology (timing of life cycle
events such as flowering and fruiting) to earlier dates. However,
herbaria not only directly track these climate-related plant responses,
but also give insights into their ripple-effects on pollinators,
herbivores and even nutrient cycling.

Range shifts as spatial escape

One possible response of plants to global warming can be
distributional shifts when plants escape from unfavorable condi-
tions, which is traceable using herbarium time-series. Comparison
of field with herbarium data verifies predictions that with
progressive global warming, species will move both upslope and
poleward, following their original climatic niches. For instance,
historic time-series have monitored movements and consecutive

diversity shifts in California, Costa Rica and South America as a
whole (Feeley, 2012; Feeley et al., 2013; Wolf et al., 2016), and
hence can differentiate successfully moving species from those that
may not persist under continuously changing conditions (Feeley
et al., 2013).

Phenology timing

Instead of spatial movements, plants also can escape global warming
‘in time’ by shifting phenological events like flowering or fruiting
towardsmore favorable conditions. To track such changes in the past,
flowering timing, for example, can be approximated from collection
dates of flowering herbarium specimens. Using a combination of
contemporary flowering time observations with a herbarium spec-
imen series across > 100 yr and 37 genera, Primack and colleagues
(Primack et al., 2004) were the first to connect meteorological data
with earlier flowering, which was to a great part explained by
increasing spring temperatures. This trend has been confirmed by
multiple analogous studies (e.g. Davis et al., 2015) and also broader
approaches that integrated herbarium data with phenology records
obtained from field notes and photographs to cover recent years of
herbarium record scarcity (Panchen et al., 2012).

Spatial scale and statistical power are important factors for these
types of studies. Because phenology also depends on latitude,
altitude and other environmental factors, broad sampling is
necessary to separate climate change effects from other influences.
Moreover, as phenology is partly species- or plant functional type-
specific, it is useful to study contrasting flowering seasons, native
status, pollination syndromes or growth forms (Calinger et al.,
2013). All of this is facilitated by large-scale digitization and hence
improved accessibility of specimens world-wide (Lavoie, 2013;
Box 3). Such studies, for example, showed that annual plants are
generally more responsive to climate change than perennials
(Calinger et al., 2013; Munson & Long, 2017). Compilation of
large cross-species datasets furthermore allows the search for
phylogenetic signals and thus to identify evolutionary processes
involved in shaping the observed responses (Rafferty & Nabity,
2017). Apart from interspecies or -family variation, plant responses
also vary across geographic regions. Combination of world-wide
herbaria allows to capture such responses, enabling to include
remote localities across the globe into analyses (Hart et al., 2014;
Panchen & Gorelick, 2017).

Flowering is not the only phenological event heavily influenced
by climate change that can be tracked from herbarium specimens.
Depending on a plant’s reproductive structures, seed dispersal
timing also can be evaluated. At least for the Arctic, dispersal
timing, too, seems to advance with increasing temperatures, in
correspondence with associated flowering data (Panchen &
Gorelick, 2017). Contrariwise, it was also estimated from collec-
tion meta-information (Kauserud et al., 2008) that autumnal
mushroom fruiting, especially of early fruiting species, is delayed in
Norway, possibly reflecting a prolonged growth period due to
warm autumn and winter temperatures.

Another parameter that affects entire communities and ecosys-
tem processes is the leaf-out timing of deciduous trees, as it impacts
trophic interactions as well as nutrient and water cycling (Polgar &
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Primack, 2011). Such data collected from herbarium records track
long-term leaf-out trends (Zohner & Renner, 2014) and, for
example, confirm large-scale patterns of earlier leaf-out inferred
with satellite data (Everill et al., 2014).

Mismatching biotic interactions

Naturally, these climate change-related phenomena also affect
biotic relationships beyond plants, and hence cannot be seen
only as isolated processes. Changes of their timing are likely to
affect evolutionarily synchronized relationships, and even their
breaking-up over time is, together with flowering change,
partially recorded in herbaria. Combined with entomological
museum specimens, herbaria for example document disruption
of the plant–pollinator relationship between the bee Andrena
nigroaenea and the orchid Ophrys sphegodes (Robbirt et al.,
2014). In herbivory relationships, herbarium specimens can
actually directly reflect insect reactions to warming. For
example, increased traces left by the scale insect Melanaspis
tenebricosa on maple tree leaves collected in warmer years
evidence a higher insect density, perfectly in accordance with
observations in the field (Youngsteadt et al., 2015). Herbaria
can thus help overcome the lack of historical insect abundance
records and facilitate evaluation of climate change effects
beyond plants alone.

The greatest challenge of most aforementioned approaches
investigating species’ responses to pollution, and habitat and climate
change, is their inability to distinguish between plastic responses and
evolutionary adaptation (Leger, 2013; Munson & Long, 2017), and
thus whether observed differences among herbaria specimens reflect
genetic changes or just environmentally induced phenotypic changes
caused, for instance, by physiological processes (Bradshaw, 1965;
Nicotra et al., 2010).Quantitative geneticsmethods using herbarium
time-series could help in disentangling these two alternative
hypotheses (Gienapp et al., 2008; Tiffin & Ross-Ibarra, 2014).
Once the genetic basis of phenotypic differences is identified, local
adaptation can be further tested using traditional approaches such as
common garden experiments and reciprocal transplant studies
(Savolainen et al., 2013).

Biological invasions

Natural long-distance dispersal of plants is rare (Nathan &
Muller-Landau, 2000), but as a side effect of global change, plants
increasingly move long distances (van Kleunen et al., 2015a). This
movement massively increased with human migration waves
towards the New World in the 16th century, and further
accelerated with growing trade and faster transportation –
coinciding with the core time range of herbarium collections.
Today, jet-setting plant stowaways establish as ‘neophytes’, ‘aliens’
or ‘invaders’ wherever conditions are favorable enough. With this
growing alien species richness, the global species distribution is
getting more homogenous (Winter et al., 2009). Local plants lose
habitats and thus genetic diversity to the invaders, which are
therefore considered a threat to biodiversity (Millennium Ecosys-
tem Assessment, 2005).

Understanding invasion dynamics

Understanding the causes and spatiotemporal dynamics of inva-
sions is indispensable to prevent further damage, preserve natural
ecosystems and prioritize management actions (Vil�a et al., 2011;
van Kleunen et al., 2015b). Although contemporary surveys depict
the current status of invasive species, herbaria track invasions from
the first recorded colonizer onwards – which can serve as a proxy,
even if it is not the actual first colonizer. In conjunction with
contemporary collections and literature surveys, herbaria are
crucial to establish inventories of introduced species that monitor
their status of naturalization – or invasion – and inform
management strategies (Magona et al., 2018). With native plants
as baseline for collection efforts and abundance, herbaria illustrate
geographical and temporal spreads (Crawford &Hoagland, 2009)
thatmay – in search for invasion causes –be connectedwith historic
events. For instance, a map of Chilean alien expansions uncovers
two spread peaks, one connected to the spread of agriculture, the
other to its increased mechanization (Fuentes et al., 2008).
Understanding such causalities can feed early preventive measures:
retrospectively mapped invasions identify geographic invasion
hotspots, and the environmental and anthropogenic factors crucial
for their creation. In this way, herbaria can contribute to
understanding the general invasibility of particular habitats (Aikio
et al., 2012; Dawson et al., 2017). Furthermore, combined with
contemporary data, they can help to identify characteristics of
successful invaders, and to quantitatively connect and established
naturalization risk with external factors, and rank potential new
invaders (Dodd et al., 2016).

Herbaria also provide a means of assessing the continued success
of invasive species after establishment in a new environment.
Previous studies have used them both to predict and to verify
predictions of the climatic niche that plants can potentially occupy.
For example, the size of the native range of an invasive species has
been found to be highly correlated with its abundance in the new
range, as documented for many highly invasive Eurasian species
around Qu�ebec (Lavoie et al., 2013). Herbaria also can enable
estimation of a weediness index – or how much a plant associates
with human-caused disturbance – which often also overlaps with
plant invasiveness (Robin Hart, 1976). Such estimates hold well in
comparisonwith field surveys (Hanan-A et al., 2015).More precise
forecasts of a species’ spread can further include its native climate
range, again extrapolated from herbarium records, thereby roughly
visualizing occupation of a possible climatic niche (Bradley et al.,
2015). Much as surveying and modeling the dynamics and spread
of invaders is crucial to inform containment measures, it is very
sensitive to biases and errors in historical collections – one crucial
and common error beingmisidentification andmisnaming (Jacobs
et al., 2017) – and increasingly at risk from decreasing collection
efforts (see Box 2).

Genetic changes of invaders

Irrespective of whether invasive species stay within their native
climatic range or move beyond, they face challenges when
establishing in new environments. Successful invasive species often
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adjust to the novel conditions, and it is therefore important to
understand such changes in the invasive range.

Adjustment of morphological traits to novel environments is
often well-captured in herbaria, as demonstrated with Australian
invasives where 70% of surveyed species showed at least one
phenotypic trait changing over time (Buswell et al., 2011). With
NGS, it is now possible to define whether this trait variation is
associated with genomic changes – caused either by drift or
potentially adaptive – or more likely the result of phenotypic
plasticity. In addition, these methods can potentially solve the
‘genetic paradox of invasion’: the surprising success and spread of
colonizers in spite of their reduced genetic diversity (Estoup et al.,
2016): Do these species adapt based on their (reduced) standing
genetic variation, do they borrow pre-adapted standing variation
from native species (adaptive introgression; Keller &Taylor, 2010;
Arnold et al., 2016), or do they rely on de novomutations and hence
novel variation (Exposito-Alonso et al., 2018a)?

Comparison of historic native and invasive populations with
contemporary genetic diversity can also point to diversification or
hybridization events before species expansion. A recent herbarium
genetics study, for example, has shown strong divergences of
flowering time genes particularly during the establishment phase of
the invader Sisymbrium austriacum ssp. chrysanthum, possibly
enabling a subsequent spread (Vandepitte et al., 2014). Such
patterns change over the course of invasion. In the EurasianAlliaria
petiolata invading North America, invasive success declines along
with population age and reduced phytotoxin production in late
stages of invasion (Lankau et al., 2009). Contrary to that, chemical
analyses of herbarium specimens of the phototoxicPastinaca sativa,
a European weed also invading North America, displays increased
concentrations of phytochemicals over time since invasion, which
coincide with the emergence of the herbivore Depressaria
pastinacella (Zangerl & Berenbaum, 2005). Studies using ancient
DNA also have pointed to anthropogenic landscape disturbances
causing genetic admixture in Ambrosia artemisiifolia’s native
populations before its introduction to new habitats, potentially a
prerequisite for later invasive success (Martin et al., 2014b). In this
sense, herbarium material allows us to compare genetic composi-
tion through time, and to identify so-called ‘cryptic’ (i.e. hidden)
invasions, where native genotypes are dispelled by phenotypically
indistinguishable but more successful and aggressively spreading
non-native relatives (Saltonstall, 2002).

Hitchhiking invaders: pathogens and herbivores

Moving beyond plant invasions, herbaria even harbor information
about hitchhikers traveling with the original plant stowaways,
pathogens, purposely or unknowingly sampled together with their
hosts (Yoshida et al., 2014). Thereby, they track the invasion
(success) stories of plant pathogens such as Phytophthora infestans,
the microbe at the root of potato late blight and the Irish potato
famine (Martin et al., 2013, 2014a; Yoshida et al., 2013). Other
preserved pathogens of particular interest for agriculture include
rust fungi and downy-mildew-causing oomycetes. Herbaria allow
identification of causal strains, their genetic characteristics and their
tracking to contemporary pathogen diversity. Coupled with host

plant analyses, they provide a (genetic) timeline of host–pathogen
dynamics to study and illustrate co-evolutionary principles such as
the arms race between hosts and their pathogens. Genetic analysis
of such systems can hence provide crucial insight into spread
dynamics of pathogens that could have devastating consequences
on crop monocultures world-wide.

Even for invasive herbivores, historic samples may contain a
genetic record. The horse chestnut leaf-mining moth Cameraria
ohridella, for example, is preserved pressed and dried in leaves of its
host plant (Lees et al., 2011). Genetics can backtrack the moth’s
spread from its native Balkan region, and in conjunction with host
plant analysesmay identify resistant cultivars and biocontrol agents
for the invasive pest (Lees et al., 2011).

Conclusions and outlook

Plants preserved in herbaria offer unique perspectives on global
change and its consequences, as they are directly affected victims
(Fig. 2). Thus, they represent an invaluable temporal, geographical
and taxonomic extension of currently available data employed to
understand global environmental change, predict its course and
inform conservation measures. To fully take advantage of this
potential, and to increase and sustain the value of herbaria for the
future, three core areas demand particular attention: the mainte-
nance and curation of herbaria including continued collection
efforts, the digitization of collections, and herbarium genomics (see
also Boxes 1–3).

Even thoughmany herbaria are already investing in digitization,
only a fraction of the c. 350 million specimens world-wide have
been digitized so far. Large-scale digitizationwould both encourage
the use of herbaria for research, and strengthen projects (e.g.
Munson& Long, 2017), as studies including digitized material are
able to use large sample sizes (Lavoie, 2013). Fast processing of
specimens at consistently high data quality is crucial for making
digital herbaria truly useful (Yesson et al., 2007), as is substantial
funding to enable this task and secure databases’ continuity. Yet,
even with increased digitization, the actual power of herbaria – for
climate change study amongst other types of research – lies in their
continuity through time. Despite growing recognition of the value
of herbaria, this characteristic is currently threatened by declining
collection efforts (i.e. Prather et al., 2004;Meyer et al., 2016) and a
frequent lack of support for herbaria world-wide. Consequences of
reduced data formodeling and other analyses can already be seen in
the tropics, where collections are generally sparse (Feeley&Silman,
2011). To maintain herbaria as the treasure they are today,
continued and consistent collection world-wide is essential,
especially because they have recently revealed themselves as a
browsable repository of genetic variation and diversity. This
drastically increases the value of herbaria for climate change
research, and for understanding principles of adaptation and
evolution in this context. To date, herbaria are still underused in
this aspect (Lavoie, 2013), and in particular, high-quality
sequencing data are scarce. With firm guidelines for protocols
and quality standards, pointing also to the necessity of DNA
preservation-informed sequencing efforts, this neglect is likely to
change in the coming years.
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Hence, being aware of the answers herbaria can give if we use the
right methods to ask, it is up to us to keep herbaria alive and well,
define what we need to know, and start the questioning.
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